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Introduction

Warm up: Holomorphic curves in Cn

1.1.1. The usual CR equations are i ∂u
∂xj

= ∂u
∂yj

for all 1 ≤ j ≤ m, equivalently i◦du
(

∂
∂xj

)
= du

(
∂

∂yj

)
and we also we have that ∂

∂yj
= i ∂

∂xj
with i applied as a linear map, thus i ◦ du = du ◦ i over

∂
∂xj

’s. Similarly multiplying the sides of the above CR equations by i gives −du
(

∂
xj

)
=

du
(
− ∂

∂xj

)
= idu

(
∂
yj

)
and noting that − ∂

∂xj
= i ∂yj we are seeing du ◦ i = idu over the ∂

∂yj
’s.

And the implication is reversible too.

1.1.2. To prove (1.1.2), in the easier case of n = 1, for vectors X = x+ ix′ and Y = y + iy′ we have

Re⟨i(x+ ix′), y + iy′⟩ = −x′y + xy′ = −dq1 ⊗ dp1 + dp1 ⊗ dq1 = dp1 ∧ dq1

and the n ≥ 2 case is the coordinate-wise generalization of this. For the properties:

1. Nondegeneracy: if V ̸= 0 then ω(V, iV ) = Re⟨iV, iV ⟩ = Re∥V ∥2 > 0. So iV asserts
that ω(V, ·) is nondegenerate.

2. Closedness: direct computation of the exterior derivative.
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3. The n-fold product: in expanding the product ωstd∧· · ·∧ωstd, then only 2n-forms that
survive are the terms of form of the natural volume form. And when we are rearranging
the wedges inside each of the remaining terms to get them to the form

dp1 ∧ dq1 ∧ dp2 ∧ dq2 ∧ · · · ∧ dpn ∧ dqn,

we will be doing even number of wedge flips (a pair of flips for each pair dpi, dqi) therefore
all terms appear with their own positive sign, overall giving a nonvanishing top form.

1.1.3. If ω is degenerate, then take v ∈ R2n such that ω(v, w) = 0 for all w ∈ R2n. We have that
ωn = ω∧ωn−1 = n!

(n−1)!Alt(ω⊗ω
n−1), and again recursively expanding ωn−1 by the alternation

and keep doing this for all ωk’s, we see that overall ωn is a bunch of ω ⊗ · · · ⊗ ω︸ ︷︷ ︸
n tensorands

with some

coefficients and signs; therefore if we plug in w ∈ R2n alongside any (n − 1)-tuple of vectors
v1, . . . , vn−1, each term in the expansion will vanish because in any term, because in each term,
w appears in one of the tensorands and makes that tensorand vanish. This contradicts with
ωn being a volume form.

On the other hand, if ω is nondegenerate, pick a symplectic basis {ei, fi}ni=1 for R2n (con-
struction is discussed in Theorem 1.1 of Ana Cannas da Silva’s book) with ω(ei, fj) = δij , so
ω =

∑
n dei ∧ dfi and similar to problem 1.1.2 we get a volume form.

Hamiltonian systems and symplectic manifolds
1.2.1. The existence of XH is guaranteed because of the nondegeneracy of ω. If X ′

H is another such
vector field we’d have ωstd(XH − X ′

H , ·) = 0 but again as a nondegenerate ω identifies TM
and T ∗M , we have XH −X ′

H = 0. To confirm the form of XH we compute,(∑
n

dpi ∧ dqi

)
[XH ] =

∑
n

(dpi ⊗ dqi − dqi ⊗ dpi)

[
∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi

]
=
∑
n

−∂H
∂qi

dqi −
∂H

∂pi
dpi = −dH,

as desired.

Some favorite examples
1.3.2. If we go from a coordinate system (q1, . . . , qn) to another one like (q̃1, . . . , q̃n), then by the

coordinate change we have,

∑
i

pi dqi =
∑
i

pi
∑
j

∂qi
∂q̃j

dq̃j =
∑
j

(∑
i

∂qi
∂q̃j

· pi

)
dq̃j

=
∑
j

p̃j dq̃j ,

and so the form of the form (!) doesn’t depend on the coordinate system.
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1.3.5. λz(X) is real because Im(iz,X) is the real inner product of z with X as vectors in R2n+2,
and hence equal to zero. Only the nondegeneracy condition is left. Directly computing the
form, with z = (p1 + iq1, . . . , pn+1 + iqn+1) and X = (a1 + ib1, . . . , an+1 + ibn+1), we have
λz(X) =

∑
k pk bk − qk ak, i.e. λz(X) =

∑
k pk dqk − qk dpk and so dλz =

∑
k 2dpk ∧ dqk,

which is the same as the standard symplectic structure on R2n at each point, and hence
nondegenerate by exercise 1.1.2.

1.3.6. Same as the proof for RPn being a smooth manifold (can be found e.g. in Lee’s smooth
manifolds book), and just substituting with CPn and being a complex manifold.

Darboux’s theorem and the Moser deformation
trick

1.4.2. Theorem 1.1 of da Silva’s notes.

1.4.7. By the cohomological hypothesis we can assume that ωt = ω0 + dλt. Therefore as in equation
(1.4.1) we get LYtωt +

d
dtdλt = dιYtωt + dλ̇t = 0 and so it suffices to solve for ωt(Yt, ·) = λ̇t.

Then the isotopy generated by Yt exists because of the compactness condition on M and we
have d

dt(φ
∗
tωt) = 0, as desired.

1.4.8. We know that H2
dR(CP

n) = R. So first, we notice that ω, which is an arbitrary symplectic
form, is non-exact: if otherwise then ω = dλ for some 1-form λ. Since ω is closed, by induction
and using the Leibniz rule on differential forms, ωk’s are also closed for all k, and therefore by
another application of the Leibniz rule we have ωn = d(λ ∧ ωn−1). Therefore Stokes theorem
gives

∫
CPn ωn =

∫
∂CPn λ ∧ ωn−1 = 0 but this is a contradiction because ω being symplectic

implies ωn being a volume form.

Therefore [ω] spans H2 and [ω′] = c[ω] = [cω], and c ̸= 0 since ω′ is also nondegenerate.
Moser’s stability theorem then implies that ω′ and cω are isotopic. That c > 0 follows from
the existence of the deformation equivalence ωt being a continuous family of nondegenerate
forms interpolating c · ω and +1 · ω.

From symplectic geometry to symplectic topology
No problems in this section.

Contact geoemtry and the Weinstein conjecture
Contact manifolds skipped in this first reading.

Symplectic fillings of contact manifolds
Contact manifolds skipped in this first reading.
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Fundamentals

Almost complex manifolds and J-holomorphic
curves

2.1.1. (a) Take a vector x1 ̸= 0 and define y1 := Jx1. Then for each 2 ≤ k ≤ n let xk ∈ V \
span(x1, y1, . . . , xk−1, yk−1) and again set yk := Jxk. By construction, they form a basis
and J has the matrix form Jstd in this basis.

(b) If there was just a J then det(−J) = (−1)n det(J) = −det(J). Note also that J2 = −1
implies det(J) = ±1; which in any case the first sentence implies det(−J) det(J) =
−1, but this cannot hold because also det(−J) det(J) = det(−J2) = det(1) = 1, a
contradiction.

(c) Note that such a map A would be complex linear and in that case detRA = |detCA|2 > 0.

2.1.2. (a) If we take a trivialization of π : E2k+n → Mn, i.e. an open U ∋ p and φ : π−1(U) →
Rn ×R2k, we can then define a bundle automorphism ψ : Rn ×R2k → Rn ×R2k given by
(q, v) 7→ (q, Aq(v)) where Aq ∈ GL(2n,R) is the matrix that takes the basis {xi, yi}ki=1 ⊂
R2k as defined in exercise 2.1.1, to the basis

{(0, . . . , 0, 1︸︷︷︸
2i-th place

, 0, . . . , 0), (0, . . . , 0, 1︸︷︷︸
(2i+1)-th place

, 0, . . . , 0)} ⊂ R2k.

Then ψ ◦ φ is a desirable trivialization.
(b) The transition maps between say trivialization φ and ψ, fiber-wise amount to linear

change of coordinate maps Aq : R2k → R2k for all q ∈ U . Let {xi, yi}2ki=1 and {x̃i, ỹi}2ki=1

respectively be the two bases afforded by φ and ψ; then [Aq]ij = dẽj(ei). Noting that by
linearity of J we have dJ = J , we can write

JA(x1) = J
∑
i

dx̃i(x1)x̃i + dỹi(x1)ỹi

=
∑
i

dx̃i(x1)ỹi − dỹi(x1)x̃i

=
∑
i

dx̃i(J(−y1))ỹi − dỹi(J(−y1))x̃i

=
∑
i

−d(x̃i ◦ J)(y1)ỹi + d(ỹi ◦ J)(y1)x̃i

=
∑
i

−− dỹi(y1)ỹi + dx̃i(y1)x̃i

= A(y1) = AJ(x1).

And similarly for the rest of xj ’s.

2.1.5. (a) By the tensor characterization lemma (Lee 2nd Ed. lemma 12.24) a map X(M)×X(M) →
C∞(M) is induced by a smooth tensor field if and only if it is multilinear over C∞(M),
which can be directly verified here.

(b) At each point p ∈M and for any 0 ̸= v ∈ TpM we can directly verify that

NJ(v, v) = NJ(Jv, v) = NJ(v, Jv) = NJ(Jv, Jv) = 0,
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but since M is 2-dimensional, the set {v, Jv} forms a basis for TpM and implies that NJ

vanishes at every p.

(c) For each point p, let Xi and Y i be vector fields such that Xi
p = ∂

∂xi , Y
i
p = ∂

∂yi
where

{xi, yi}ni=1 is a complex coordinate coming from the complex structure, i.e. J ∂
∂xi = ∂

∂yi
.

Note that
[Xi, Xj ]p = [Y i, Y j ]p = [Xi, Y j ]p = 0

for all 1 ≤ i, j ≤ n, because the tangents come from coordinate vectors. We can then
easily see that these imply

NJ(X
i, Xj) = NJ(X

i, Y j) = NJ(Y
i, Xj) = NJ(Y

i, Y j) = 0,

which in turn vanishes NJ at each p.

Compatible and tame almost complex structures
2.2.1. Note that GL(n,C) matrices are the ones like A that satisfy Ai − iA = 0, a closed condi-

tion, hence GL(n,C) is a closed subgroup and the quotient GL(2n,R)/GL(n,C) is a smooth
manifold of dimension (2n)2 − 2 · n2 = 2n2. The map Φ is clearly smooth and for de-
scendance of the map, we see that for any A ∈ GL(2n,R) and C ∈ GL(n,C) we have
Φ(AC) = ACiC−1A−1 = AiCC−1A−1 = Φ(A). Also GL(2n,R)/GL(n,C) is non-compact be-
cause for example for the family of representative matrices At with At((1, 0⃗2n−1)) = (1, ⃗02n−1)
and At(0, 1, 0⃗2n−2) = t · (0, 1, 0⃗2n−2), we have AtiA

−1
t (1, 0⃗2n−1) = t · (0, 1, 0⃗2n−2), therefore

[At]1,2 grows unboundedly if t→ ∞.

To see the injectivity, if Φ(A) = Φ(B), then B−1Ai = iB−1A, i.e. B ≃ A mod GL(n,C). To
see that the image is precisely J (Cn), firstly we have (AiA−1)2 = AiA−1AiA−1 = −1 and so
Im Φ ⊂ J (Cn). Secondly, if J ∈ J (Cn), then pick a complex basis {xk, yk}nk=1 corresponding
to J , i.e. such that J(xk) = yk. Also let {1k, ik}nk=1 be the standard basis of R2n. If we define
A ∈ GL(2n,R) by A(1k) = xk and A(ik) = yk we can see that AiA−1(xk) = Ai(1) = A(i) =
yk = J(xk), and therefore Φ is also surjective. The tangent space at each point J ∈ J (Cn)
is by definition equal to the quotient of vector spaces TJGL(2n,R)/TJGL(n,C). We know
TJGL(2n,R) = End(2n,R), and note that every element A ∈ End(2n,R) can be written as
the sum of a complex linear and a complex antilinear map as the following. Say if n = 1 and

A =

(
a b
c d

)
then let B =

(
a+d
2

b−c
2

− b−c
2

a+d
2

)
∈ EndC(Cn) and C =

(
a−d
2

b+c
2

b+c
2 −a−d

2

)
∈ EndC(Cn),

then A = B + C. For bigger n’s just do this construction per each complex coordinate.
Considering also the dimensions, we can confirm that EndR(Cn) = EndC(Cn)⊕EndC(Cn) and
so the equality for the tangent space follows as well.

2.2.2. Fixing some complex structure J0 and using the atlas in which J0 is given by the matrix Jstd in
all trivialization (using problem 2.1.2), define the function f : J (E) → Γ(AutR(E)/AutC(E, J0) →
M) with f(J) at p ∈ M being the class of the change of coordinate matrix Ap such that
ApJstdA−1

p = [J ]p (such Ap’s are afforded by taking a J-complex basis {xk, yk} to the standard
complex basis {1k, ik}). Furthermore for any section Ap ∈ Γ(AutR(E)/AutC(E, J0) →M), let
Jp defined via Ap as before, and the fact that Ap is smooth in p implies that so is Jp, giving
a complex structure over the whole E →M . Thus we have a bijection.
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2.2.3. Considering the first order approximations, we are interested in JϵH for any H ∈ EndC(Cn)
and ϵ→ 0, and we see that,

JϵH =

(
1 +

1

2
iϵH

)
i

(
1 +

1

2
iϵH

)−1

≃
(
1 +

1

2
iϵH

)
i

(
1− 1

2
iϵH

)
= i

(
1− 1

2
iϵH

)2

≃ i

(
1− 2

1

2
iϵH

)
= i+ ϵH = J0 + ϵH,

where for the second line we used the geometric expansion of the last term, and for the third
line we used anti-linearity of H. This it seems to be the justification for the modification in
the parametrization (2.2.1) of the book.

2.2.5. If ω is compatible, then

ω(Jv, Jw) = gJ(Jv,w) = gJ(w, Jv) = ω(w,−v) = ω(v, w).

Conversely if ω is J-invariant, then

ω(v, Jw) = ω(Jv, J2w) = ω(Jv,−w) = ω(w, Jv),

so ω is symmetric and hence compatible.

2.2.6. For tameness, we see that for all f ∈ F and d ∈ F⊥ω with f + d ̸= 0 we have

ω(f + d, (j ⊕ j′)(f + d)) = ω(f, j(f)) + ω(d, j′(d)) > 0

where the two other terms vanish because of the symplectic complementation, and the in-
equality because of tameness of j and j′.

For compatibility, similarly we have

ω(f1 + d1, (j ⊕ j′)(f2 + d2)) = ω(f1, j(f2)) + ω(d1, j
′(d2))

= ω(f2, j(f1)) + ω(d2, j
′(d1))

= ω(f2 + d2, (j ⊕ j′)(f1 + d1)),

where we used compatibility of j and j′ for the second line and symplectic complementation
for the last line.

2.2.7. Existence of such a system of trivializations clearly implies compatibility of J with ω. Con-
versely, as in the hint we can define such a Hermitian metric ⟨v, w⟩ for the complex vector
bundle (E, J), and as in exercise 2.1.2 consider an atlas of trivializations like φ : π−1(U) →
Rm ×R2n for which [Jq] = Jstd for each q ∈ R2n, so we also have had that transition maps are
complex linear. Then my idea is similar to 2.1.2: The map GL(n,C) → H(Cn) defined from
nonsingular matrices to Hermitian matrices (i.e. the space of Hermitian inner products) given
by C 7→ CT · C = ⟨C( ), C( )⟩std is a surjective smooth submersion (by direct computation of
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the derivative). Therefore locally if we look at the inner product [⟨·, ·⟩]q = Hq ∈ H(Cn), we
can define a smooth section of the previous map by σ : H(Cn) → GL(n,C) and we can define
a bundle complex isomorphism (so Jstd remains unchanged) by ψ : Rm×R2n → Rm×R2n via
(q, v) 7→ (q, σ(Hq)

−1(v)) which sends all Hq’s to the standard Hermitian inner product ⟨·, ·⟩std
. Hence in the trivialization ψ ◦ φ the symplectic structure is also the standard one because
Im(⟨·, ·⟩std) = ωstd, as desired.

2.2.9. For non-emptiness, as indicated in the hint, Hermitian metrics for the complex vector bundle
(E, J) are sections of the Hermitian vector bundle over the base manifold, and hence they
exist. Taking the imaginary part provides a J-compatible symplectic form, therefore both of
Ωτ (E, J) and Ω(E, J) are non-empty. Convexity also follows from the fact that if v ̸= 0 then(

(1− t)ω0 + tω1

)
(v, Jv) = (1− t)ω0(v, Jv) + tω1(v, Jv) > 0

because ω0(v, Jv), ω1(v, Jv) > 0. And also that symmetricity is preserved by linear combina-
tion of symmetric forms.

7


	Introduction
	Warm up: Holomorphic curves in  Cn 
	Hamiltonian systems and symplectic manifolds
	Some favorite examples
	Darboux's theorem and the Moser deformation trick
	From symplectic geometry to symplectic topology
	Contact geoemtry and the Weinstein conjecture
	Symplectic fillings of contact manifolds

	Fundamentals
	Almost complex manifolds and J-holomorphic curves
	Compatible and tame almost complex structures


