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Introduction

Warm up: Holomorphic curves in C"

The usual CR equations are ¢ g;‘ = 8y for all 1 < j < m, equivalently iodu ( ) =du ( ay]>
and we also we have that 5~ = i3 - a - with ¢ applied as a linear map, thus ¢ o du = du o ¢ over
a%j’s. Similarly multlplylng the 51des of the above CR equations by i gives —du (%) =

— 0 : o) o)
du (_BT]»> = idu <E> and noting that ~0a; = z? we are seeing du o ¢ = idu over the 7 ’s.

And the implication is reversible too.

To prove (1.1.2), in the easier case of n = 1, for vectors X = 2+ iz’ and Y = y + iy’ we have
Re(i(x +i2'),y +iy') = —2'y + 2/ = —dq1 @ dp1 + dp1 ® dq1 = dp1 N dq
and the n > 2 case is the coordinate-wise generalization of this. For the properties:

1. Nondegeneracy: if V # 0 then w(V,iV) = Re(iV,iV) = Re||[V||? > 0. So iV asserts
that w(V,-) is nondegenerate.

2. Closedness: direct computation of the exterior derivative.
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3. The n-fold product: in expanding the product wgiq A - - - Awstq, then only 2n-forms that
survive are the terms of form of the natural volume form. And when we are rearranging
the wedges inside each of the remaining terms to get them to the form

dp1 Ndqr Ndpa Ndga A - N dpp N day,

we will be doing even number of wedge flips (a pair of flips for each pair dp;, dg;) therefore
all terms appear with their own positive sign, overall giving a nonvanishing top form.

If w is degenerate, then take v € R?" such that w(v,w) = 0 for all w € R?*®. We have that

W = wAw" = (n’ji!l)!Alt(w ®w" 1), and again recursively expanding w™~! by the alternation

and keep doing this for all w*’s, we see that overall w™ is a bunch of w ® - -- ® w with some
—_——

n tensorands
coefficients and signs; therefore if we plug in w € R?" alongside any (n — 1)-tuple of vectors
v1,...,Un_1, €ach term in the expansion will vanish because in any term, because in each term,
w appears in one of the tensorands and makes that tensorand vanish. This contradicts with
w™ being a volume form.

On the other hand, if w is nondegenerate, pick a symplectic basis {e;, fi}?_; for R?*" (con-
struction is discussed in Theorem 1.1 of Ana Cannas da Silva’s book) with w(e;, f;) = dij;, so
w= Zn de; A df; and similar to problem 1.1.2 we get a volume form.

Hamziltonian systems and symplectic manifolds

The existence of X is guaranteed because of the nondegeneracy of w. If X}, is another such
vector field we’d have wgq(Xp — XJ;,-) = 0 but again as a nondegenerate w identifies 7'M
and T*M, we have Xy — X}, = 0. To confirm the form of Xy we compute,

OH 0 oOH 0
dp; Ndg; | | Xy = dp; ® dq; — dg; @ dp;) | =— —=— —
<Zn:p Q>[H] > (dp; @ dg; — dg; © dp;) 3. 9. aqiapi]

n

OH OH
=S g - Plap, = —dH,
zn: og " oy
as desired.
Some favorite examples
If we go from a coordinate system (qi,...,¢,) to another one like (q,...,¢n), then by the

coordinate change we have,

ey A
;pi in—;pl . aq~] dQJ_Z<i 8[]3 pz) dCI]

J

=5 dgj,
j

and so the form of the form (!) doesn’t depend on the coordinate system.
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A.(X) is real because Im(iz, X) is the real inner product of z with X as vectors in R?"*+2
and hence equal to zero. Only the nondegeneracy condition is left. Directly computing the
form, with z = (p1 +iq1,. .., Pnt1 + iqns1) and X = (a1 + ib1,...,an41 + ibpt1), we have
A(X) =D 0ok b — qi ag, ie. \(X) = > . pk dgr — qi dpy, and so dX\, = ), 2dpy A dgy,
which is the same as the standard symplectic structure on R?” at each point, and hence
nondegenerate by exercise 1.1.2.

Same as the proof for RP" being a smooth manifold (can be found e.g. in Lee’s smooth
manifolds book), and just substituting with CP" and being a complex manifold.

Darboux’s theorem and the Moser deformation
trick

Theorem 1.1 of da Silva’s notes.

By the cohomological hypothesis we can assume that w; = wg + dA;. Therefore as in equation
(1.4.1) we get Ly,w; + %d)\t = duy,wt + d)\; = 0 and so it suffices to solve for wr(Yz, ) = M.
Then the isotopy generated by Y; exists because of the compactness condition on M and we
have 4 (pjw;) = 0, as desired.

We know that H3,(CP") = R. So first, we notice that w, which is an arbitrary symplectic
form, is non-exact: if otherwise then w = d\ for some 1-form A. Since w is closed, by induction
and using the Leibniz rule on differential forms, w*’s are also closed for all k, and therefore by
another application of the Leibniz rule we have w™ = d(A A w™!). Therefore Stokes theorem
gives f@m w" = [, acpn AN w1 = 0 but this is a contradiction because w being symplectic
implies w™ being a volume form.

Therefore [w] spans H? and [w'] = clw] = [cw], and ¢ # 0 since ' is also nondegenerate.
Moser’s stability theorem then implies that w’ and cw are isotopic. That ¢ > 0 follows from
the existence of the deformation equivalence w; being a continuous family of nondegenerate
forms interpolating ¢ - w and +1 - w.

From symplectic geometry to symplectic topology

No problems in this section.

Contact geoemtry and the Weinstein conjecture

Contact manifolds skipped in this first reading.

Symplectic fillings of contact manifolds

Contact manifolds skipped in this first reading.
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Fundamentals

Almost complex manifolds and J-holomorphic
curves

2.1.1. (a) Take a vector ;1 # 0 and define y; = Jz;. Then for each 2 < k < n let x € V' \
span(z1,y1, ..., %k—1,Yk—1) and again set yj := Jxp. By construction, they form a basis
and J has the matrix form Jgg in this basis.

(b) If there was just a J then det(—.J) = (—1)"det(J) = —det(J). Note also that J? = —1
implies det(J) = =+1; which in any case the first sentence implies det(—J)det(J) =
—1, but this cannot hold because also det(—.J)det(.JJ) = det(—J?) = det(1) = 1, a
contradiction.

(c) Note that such a map A would be complex linear and in that case detg A = |detc AJ? > 0.

2.1.2. (a) If we take a trivialization of 7w : E?**™ — M™ ie. an open U 3 p and ¢ : 7~ H(U) —
R™ x R%* we can then define a bundle automorphism 1 : R” x R?* — R™ x R?* given by
(q,v) = (g, A4(v)) where A, € GL(2n,R) is the matrix that takes the basis {z;,y;}%_, C
R?* as defined in exercise 2.1.1, to the basis

{(0,...,0, 1 ,0,...,0),(0,...,0, 1 ,0,...,0)} C R,
~—~ ~—~
2i-th place (2i4+1)-th place

Then v o ¢ is a desirable trivialization.

(b) The transition maps between say trivialization ¢ and 1, fiber-wise amount to linear
change of coordinate maps A, : R — R2?* for all ¢ € U. Let {xl,yl}fﬁl and {iz,gjl}fil
respectively be the two bases afforded by ¢ and 1; then [Ay];; = dé;(e;). Noting that by
linearity of J we have dJ = J, we can write

JA(z) = J Z dzi(x1)%; + dijs(z1)Ts
= Z dz;(z1)y; — dgi(z1) T
= DT (=) — dGi(J (—y0) i

- Z —d(&; o J)(y1)¥i + d(Fi o J)(y1)&;

= Z — —dyi(y1)¥i + dTi(y1) T
= A(yl) = AJ(JJ1).

And similarly for the rest of x;’s.

2.1.5. (a) By the tensor characterization lemma (Lee 2nd Ed. lemma 12.24) a map X(M)xX(M) —
C*°(M) is induced by a smooth tensor field if and only if it is multilinear over C*° (M),
which can be directly verified here.

b) At each point p € M and for any 0 # v € T,M we can directly verify that
P

Nj(v,v) = Nj(Jv,v) = Ny(v, Jv) = Ny(Jv, Jv) =0,
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but since M is 2-dimensional, the set {v, Jv} forms a basis for T, M and implies that N;
vanishes at every p.

¢) For each point p, le ' an " be vector fields suc a = Oy = 7 Where
Fi h point p, let X* and Y* b tor field h that X} ax YZ h
{xi, i} is a complex coordinate coming from the complex structure, i.e. J B 82,-.

Note that o o o
[Xzaxj]li - [Yzﬂyj]P - [Xzﬂyj]P =0

for all 1 < 4,5 < n, because the tangents come from coordinate vectors. We can then
easily see that these imply

Ny(X4 X9) = Nj(X',Y7) = Nyj(Y, X9) = Ny(Y,Y7) =0,

which in turn vanishes N; at each p.

Compatible and tame almost complex structures

Note that GL(n,C) matrices are the ones like A that satisfy Ai —iA = 0, a closed condi-
tion, hence GL(n,C) is a closed subgroup and the quotient GL(2n,R)/GL(n,C) is a smooth
manifold of dimension (2n)? — 2 -n? = 2n?. The map ® is clearly smooth and for de-
scendance of the map, we see that for any A € GL(2n,R) and C € GL(n,C) we have
O(AC) = ACIC 1A~ = AiCC7tA~! = ®(A). Also GL(2n,R)/GL(n,C) is non-compact be-
cause for example for the family of representative matrices A; with A;((1, ng,l)) = (1, 02;,1)
and A (0, 1,62n_2) =t- (0, 1,62n_2), we have AtiAt_l(l,ﬁgn_l) =t- (0, 1,62n_2), therefore
[A¢]1,2 grows unboundedly if t — oo.

To see the injectivity, if ®(A) = ®(B), then B~'Ai =iB~'A, i.e. B~ A mod GL(n,C). To
see that the image is precisely J(C"), firstly we have (AiA™1)2 = AiA"14iA~! = —1 and so
Im ® C J(C"). Secondly, if J € J(C"), then pick a complex basis {zy, yx}}_, corresponding
to J, i.e. such that J(zj) = yg. Also let {1y, ix}?_, be the standard basis of R?". If we define
A € GL(2n,R) by A(1;) = a1, and A(i) = yx we can see that AiA~1(zy) = Ai(1) = A(i) =
yr = J(x), and therefore ® is also surjective. The tangent space at each point J € J(C")
is by definition equal to the quotient of vector spaces T;GL(2n,R)/T;GL(n,C). We know
T;GL(2n,R) = End(2n,R), and note that every element A € End(2n,R) can be written as

the sum of a complex linear and a complex antilinear map as the following. Say if n = 1 and
a—d b+c

a b atd  b—c

A= <c d> then let B = <_§_c a+d> € End¢(C") and C = (b-Qs—c i d> € End¢(CM),
2 2 2

then A = B + C. For bigger n’s just do this construction per each complex coordinate.

Considering also the dimensions, we can confirm that Endg (C") = End¢(C") @ Endc(C") and
so the equality for the tangent space follows as well.

Fixing some complex structure Jy and using the atlas in which Jj is given by the matrix Jgq in

all trivialization (using problem 2.1.2), define the function f : J(E) — I'(Autr(E)/Autc(E, Jo) —

M) with f(J) at p € M being the class of the change of coordinate matrix A, such that
ApJsaAyt = [J]p (such Ay’s are afforded by taking a J-complex basis {x, yx} to the standard
complex basis {1, i }). Furthermore for any section A, € I'(Autr(E)/Autc(E, Jo) — M), let
Jp defined via A, as before, and the fact that A, is smooth in p implies that so is J,, giving
a complex structure over the whole £ — M. Thus we have a bijection.
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Considering the first order approximations, we are interested in J.g for any H € End¢(C")

and € — 0, and we see that,
1 1o\
Jeg=\14+=ieH i1+ —ieH
2 2
1 1
~ (1+ 2ieH> i (1 - 2ieH>
1 2
:i<1—21'eH>
1
Nz’(l—22z’eH>
=i4+eH =Jy+€eH,

where for the second line we used the geometric expansion of the last term, and for the third
line we used anti-linearity of H. This it seems to be the justification for the modification in
the parametrization (2.2.1) of the book.

If w is compatible, then
w(Jv, Jw) = g;(Jv,w) = gj(w, Jv) = w(w, —v) = w(v,w).
Conversely if w is J-invariant, then
w(v, Jw) = w(Jv, J*w) = w(Jv, —w) = w(w, Jv),

so w is symmetric and hence compatible.

For tameness, we see that for all f € F and d € F* with f + d # 0 we have

w(f +d, (G §)(f +d) =w(fi(f) +wd,j'(d) >0

where the two other terms vanish because of the symplectic complementation, and the in-
equality because of tameness of j and j'.

For compatibility, similarly we have

w(fi +du, (7 @ 5)(fa + d2)) = w(f1,5(f2)) +w(di, 5 (da))
w(f2,j(f1)) + w(dy, j'(d1))

(fa+d2, (@ 7)) (f1+ dv)),

where we used compatibility of j and j’ for the second line and symplectic complementation
for the last line.

Existence of such a system of trivializations clearly implies compatibility of J with w. Con-
versely, as in the hint we can define such a Hermitian metric (v, w) for the complex vector
bundle (E,J), and as in exercise 2.1.2 consider an atlas of trivializations like ¢ : 7= 1(U) —
R™ x R?" for which [Jq] = Jstq for each ¢ € R?". so we also have had that transition maps are
complex linear. Then my idea is similar to 2.1.2: The map GL(n,C) — H(C") defined from
nonsingular matrices to Hermitian matrices (i.e. the space of Hermitian inner products) given
by C+— CT - C = (C(),C())stq is a surjective smooth submersion (by direct computation of
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the derivative). Therefore locally if we look at the inner product [(-,-)]; = Hy € H(C™), we
can define a smooth section of the previous map by o : H(C") — GL(n,C) and we can define
a bundle complex isomorphism (so Jyq remains unchanged) by 1 : R™ x R?" — R™ x R?" via
(q,v) = (g,0(H,)~(v)) which sends all H,’s to the standard Hermitian inner product (-, )stq
. Hence in the trivialization v o ¢ the symplectic structure is also the standard one because
Im((-, ")sta) = wstd, as desired.

For non-emptiness, as indicated in the hint, Hermitian metrics for the complex vector bundle
(E,J) are sections of the Hermitian vector bundle over the base manifold, and hence they
exist. Taking the imaginary part provides a J-compatible symplectic form, therefore both of
Q7 (E,J) and Q(E, J) are non-empty. Convexity also follows from the fact that if v # 0 then

(1 = t)wo + twr) (v, Jv) = (1 = t)wo (v, Jv) + twy (v, Jv) >0

because wy (v, Jv),wi(v, Jv) > 0. And also that symmetricity is preserved by linear combina-
tion of symmetric forms.
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